
1.8 Requirements and Pole-Zero Patterns
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Figure 1.37 Effect of additional poles and zeros. The left figure shows step responses
of a system with additional fast poles and the right plot shows responses of systems
with additional fast zeros in the left (full lines) right (dashed lines) half plane. The fast
singularities are 2, 5 and 10 times larger than ω0.

will behave like a second order system with the same poles. The behavior is
modified if there are other poles close to the dominant poles. Poles and zeros
that are close are called dipoles. They influence tracking of slow signals but
have little effect on the step response. Poles and zeros to the left of the dominant
poles have little influence on the transient response if they are sufficiently far
away from the dominant poles.
The following example shows that fast stable poles and fast zeros have little

influence on the step response.

EXAMPLE 1.9—EFFECT OF FAST POLES AND ZEROS
Figure 1.37 illustrates the effect of additional fast poles and zeros. The left
figure shows the step responses of systems that have dominant poles with
damping ratio ζ = 0.5 at a distance ω 0 from the origin and extra poles at
2ω 0, 5ω 0 and 10ω 0. The figure shows that poles 5 to 10 times faster than the
dominant poles have small influence on the step response.
The right figure shows the effect of an extra zero at ±2ω 0,±5ω 0 and ±10ω 0.

Curves corresponding to right half plane zeros are shown in dashed lines, notice
that these responses have negative overshoot. The effect of the zero is small if
they have distances longer than 5 to 10ω 0.

Relations between the requirements and the pole-zero configuration will now
be discussed for simple systems. † t: Dipoler flyttat till

LeftOver

First Order Systems

Consider a system with the transfer function

G(s) =
a

s+ a
=

1
1+ sT

(1.76)

where T is the time constant of the system. This transfer function also describes
the response of the process output to set-point changes for a system with error
feedback, where the loop transfer function is

Gl(s) =
G(s)
1− G(s)

=
a

s
=
1
sT
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1.8 Requirements and Pole-Zero Patterns

Table 1.3 Properties of the transfer function Gyysp = a/(s+ a).

Property Value

Rise time Tr = 1/a = T
Settling time (2%) Ts = 4/a = 4T
Average residence time Tar = T = 1/a
Overshoot o = 0
Error coefficients e0 = 0, e1 = 1/a = T
Bandwidth ω b = a
Sensitivities Ms = Mt = 1
Gain margin "m =∞
Phase margin ϕm = 90○

Gain crossover frequency ω"c = a

The step response h(t) and the impulse responses "(t) of the system G(s)
are

h(t) = 1− e−at = 1− e−t/T , "(t) = ae−at =
1
T
e−t/T

Simple calculations give the properties of the step response shown in Ta-
ble 1.3. The step and impulse responses are monotone. The velocity constant
e1 is also equal to the time constant T . This means that there will be a con-
stant tracking error of e1v = v0T when the input signal is a ramp r = v0t.
The Nyquist curve of the loop transfer function is the negative imaginary axis,
which implies that the phase margin is 90○. This system has a gain crossover
frequency ω "c = a.

Second Oder System without Zeros

Consider a second order system with the transfer function

G(s) =
ω 20

s2 + 2ζ ω 0s+ω 20
(1.77)

The system G(s) has two poles, they are complex if ζ < 1 and real if ζ ≥ 1.
The step response of the system is

h(t) =

⎧
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⎪
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1−
e−ζ ω 0t

√

1− ζ 2
sin(ω dt+ φ), φ = arccosζ for &ζ & < 1

1− (1+ω 0t)e−ω 0t for ζ = 1

1−
e−ζ ω 0t

√

ζ 2 − 1
sinh(ω dt+ φ), φ = arccosζ for &ζ & > 1

where ω d = ω 0
√

&1− ζ 2& and φ = arccosζ . When ζ < 1 the step response is
a damped oscillation, with frequency ω d = ω 0

√

1− ζ 2. The step response is
enclosed by the envelopes

e−ζ ω 0t ≤ h(t) ≤ 1− e−ζ ω 0t
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1.8 Requirements and Pole-Zero Patterns

Table 1.4 Properties of the response to reference values of a second order system.

Property Value

Rise time Tr = eφ/ tanφ/ω0
Settling time (2%) Ts ( 4/(ζ ω0)
Average residence time Tar = 2ζ /ω0
Peak time Tp ( π/ωd
Overshoot o = e−πζ /

√
1−ζ 2

Error coefficients e0 = 0, e1 = 2ζ /ω0

Damped natural frequency ωd = ω0
√

1− ζ 2

Bandwidth ω b = ω0

√

1− 2ζ 2 +
√

(1− 2ζ 2)2 + 1

Maximum sensitivity Ms =

√

8ζ 2 + 1+ (4ζ 2 + 1)
√

8ζ 2 + 1
8ζ 2 + 1+ (4ζ 2 − 1)

√

8ζ 2 + 1

Sensitivity frequency ωms =
1+

√

8ζ 2 + 1
2

ω0

Resonance peak Mt = Mp =

⎧

⎨

⎩

1/(2ζ
√

1− ζ 2) if ζ ≤
√
2/2

1 if ζ >
√
2/2

Resonance frequency ωmp =

⎧

⎨

⎩

ω0

√

1− 2ζ 2 if ζ ≤
√
2/2

1 if ζ >
√
2/2

Gain margin "m =∞
Phase margin ϕm = 90○ − arctanω"c/(2ζ ω0)

Gain crossover frequency ω"c = ω0

√

√

4ζ 4 + 1− 2ζ 2

Sensitivity crossover ω sc = ω0/
√
2

The step response settles like a first order system with time constant T =
1/(ζ ω 0). The 2% settling time is Ts ( 1/(4ζ ω 0). Step responses for different
values of ζ are shown in Figure XXX in Chapter XXX. The maximum of the
step response occurs approximately at Tp ( π /ω d, i.e. half a period of the
oscillation. The overshoot depends on the damping. The largest overshoot is
100% for ζ = 0. Properties of the step response are summarized in Table 1.4.
The system (1.77) can be interpreted as a feedback system with the loop

transfer function

Gl(s) =
G(s)
1− G(s)

=
ω 20

s(s+ 2ζ ω 0)
.

The properties of the system (1.77) can then also be related to the properties
of the loop transfer function Gl(s). Specific relations are given in Table 1.4.

Second Order Systems with Zero

Consider the system with the transfer function

G(s) =
ω 20
a

⋅
s+ a

s2 + 2ζ ω 0s+ω 20
, (1.78)

2015-06-21 13:20 51
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Figure 1.38 Pole-zero pattern for the transfer functions (1.78) left and (1.80) right.
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Figure 1.39 Step responses for the transfer function (1.78). The parameters are ζ = 0.5
and α = 0.2, 0.5, 1, 2, 5,∞ in the left figure and α = −0.2,−0.5,−1,−2,−5,∞ in the right
figure.

which has been normalized so that the zero frequency gain is one. The pole-zero
diagram of the system is shown in Figure 1.38.
For ζ < 1 the step response is

y(t) = 1−
l

a
√

1− ζ 2
e−ζ ω 0t sin (ω dt+ φ + φ1), (1.79)

where ω d = ω 0
√

1− ζ 2, φ = arccosζ , and φ1 = arccos (a− ζ ω 0)/l1. The pa-
rameters φ , φ1, a and l have nice geometric interpretations as is shown in
Figure 1.38.
Step responses are shown in Figure 1.39. The zero has a large effect on the

response if it is close to the origin but little influence if it is far away (a > 5ω 0).
Notice that the angle φ1 is negative if the zero is in the right half plane. The
response then has negative overshoot.

Third Order System

Consider a system with the transfer function

G(s) =
ω 20a

(s2 + 2ζ ω 0s+ω 20)(s+ a)
(1.80)

When ζ < 1 the step response is

y(t) = 1−
a

l
√

1− ζ 2
e−ζ ω 0t sin (ω dt+ φ − φ1)−

ω 20
l2
e−at,
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1.9 Summary

where ω d = ω 0
√

1− ζ 2, φ = arccosζ and φ1 = arccos (a− ζ ω 0)/l. The pa-
rameters φ , φ1, a and l have nice geometric interpretations as is shown in
Figure 1.38

Standard Forms for the Complementary Sensitivity Function

Summarizing we find that the following transfer functions are reasonable forms
for the complementary sensitivity function for low order closed loop systems

T1 =
bc
s+ ac

, T2 =
ω c(β s+ω c)
s2 + 2ζ ω cs+ω 2c

, T3 =
αω 2c (β s+ω c)

(s2 + 2ζ ω cs+ω 2c )(s+αω c)
. (1.81)

The parameter ω c is a scale factor that determines performance, such as band-
width, response speed, etc. Parameters α , β , and ζ determine the shape of the
transfer functions. Relative damping ζ is less than one for oscillatory systems,
and larger than one when the system has real poles. The parameter α and
β have a significant influence if α < 1 and β > 1. Negative values of β give
dynamics with inverse response. Decreasing α makes the response slower and
reduces the overshoot. Increasing β makes the response and increases the over-
shoot. All transfer function (1.81) give zero steady state error for step inputs,
choosing β = 2ζ in T2 and β = 1 + 2αζ in T3 gives systems that have zero
steady state errors for ramp inputs.
Properties such as settling time, bandwidth and robustness are given by

the complementary sensitivity function Tk, disturbance attenuation and mea-
surement noise also requires information about the controller or the process.
The transfer function T2 with ζ =

√
2/2 and β = 0 and T3 with ζ = 0.5,

α = 1 and β = 0 have maximally flat frequency response meaning several
derivatives of the gain at ω = 0 are zero. The transfer function T2 with ζ =√
2/2 and T3 with ζ = 0.44, α = 0.60 and β = 0 minimize ITAE. The transfer
functions T3 with ζ = 1.6 and T2 with ζ = 0.42 and α = 0.22 minimized ITAE
for zero steady state error for ramp response.
The transfer function

T4(s) =
anω n0

sn + a1ω 0sn−1 + a2ω 20sn−2 + ⋅ ⋅ ⋅+ anω n0
(1.82)

has step responses with zero steady state error. The coefficients ak can be
chosen to obtain many different properties. Coefficients that minimize ITAE
are given in Table 1.5. The transfer function

T5(s) =
an−1ω n−10 s+ anω n0

sn + a1ω 0sn−1 + a2ω 20sn−2 + ⋅ ⋅ ⋅+ anω n0
(1.83)

give steady state responses to steps and ramps with zero steady state errors
and minimal ITAE for step responses if the coefficients ak are chosen as in
Table 1.5.

1.9 Summary

† Tore: Lär noga och
kolla speciellt
tabellen

Requirements for a control system should pay attention to load disturbances,
measurement noise, process uncertainty and set-point response. For systems
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